The systematic comparison between Gaussian mirror and Model-X knockoff models

Author:

Chen Shuai,Li Ziqi,Liu Long,Wen Yalu

Abstract

AbstractWhile the high-dimensional biological data have provided unprecedented data resources for the identification of biomarkers, consensus is still lacking on how to best analyze them. The recently developed Gaussian mirror (GM) and Model-X (MX) knockoff-based methods have much related model assumptions, which makes them appealing for the detection of new biomarkers. However, there are no guidelines for their practical use. In this research, we systematically compared the performance of MX-based and GM methods, where the impacts of the distribution of explanatory variables, their relatedness and the signal-to-noise ratio were evaluated. MX with knockoff generated using the second-order approximates (MX-SO) has the best performance as compared to other MX-based methods. MX-SO and GM have similar levels of power and computational speed under most of the simulations, but GM is more robust in the control of false discovery rate (FDR). In particular, MX-SO can only control the FDR well when there are weak correlations among explanatory variables and the sample size is at least moderate. On the contrary, GM can have the desired FDR as long as explanatory variables are not highly correlated. We further used GM and MX-based methods to detect biomarkers that are associated with the Alzheimer’s disease-related PET-imaging trait and the Parkinson’s disease-related T-tau of cerebrospinal fluid. We found that MX-based and GM methods are both powerful for the analysis of big biological data. Although genes selected from MX-based methods are more similar as compared to those from the GM method, both MX-based and GM methods can identify the well-known disease-associated genes for each disease. While MX-based methods can have a slightly higher power than that of the GM method, it is less robust, especially for data with small sample sizes, unknown distributions, and high correlations.

Funder

National Natural Science Foundation of China

Early Career Research Excellence Award from the University of Auckland, the Marsden Fund from Royal Society of New Zealand

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference52 articles.

1. Finotello, F. & Di Camillo, B. Measuring differential gene expression with RNA-seq: Challenges and strategies for data analysis. Brief. Funct. Genom. 14, 130–142 (2015).

2. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

3. Kukurba, K. R. & Montgomery, S. B. RNA sequencing and analysis. Cold Spring Harb. Protoc. 2015, pdb. top084970 (2015).

4. Bonferroni, C. E. Il calcolo delle assicurazioni su gruppi di teste. J. Studi in onore del professore salvatore ortu carboni. 13–60 (1935).

5. Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8, 3–62 (1936).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3