Personalized diet study of dietary advanced glycation end products (AGEs) and fatty acid desaturase 2 (FADS2) genotypes in obesity

Author:

Mahmoudinezhad Mahsa,Farhangi Mahdieh Abbasalizad,Kahroba Houman,Dehghan Parvin

Abstract

AbstractObesity prevalence have tripled in the past decades. It is logical to consider new approaches to halt its prevalence. In this concept, considering the effect of interaction between fatty acid desaturase 2 (FADS2) gene variants and dietary advanced glycation end products (AGEs) on obesity-related characteristics seems to be challenging. The present cross-sectional study conducted among 347 obese individuals. A validated semi-quantitative 147-item food frequency questionnaire (FFQ) was used to estimate dietary intakes and American multiethnic database was used to calculate AGEs content of food items which were not available in Iranian Food Composition Table (FCT). FADS2 gene variants were determined according to Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Analysis of covariance (ANCOVA) was used to evaluate the modifier effect of FADS2 gene-dietary AGEs on biochemical values. Based on our findings, no significant differences was reported in term of biochemical variables between AGEs tertiles. In contrast, percent of macronutrients (carbohydrate, protein and fat) of total calorie intake, amount of daily intake of fiber and meat groups showed a significant differences among AGEs tertiles. Furthermore, statistical assays clarified the modifier effects of FADS2 gene-AGEs on weight (Pinteraction = 0.04), fat mass (Pinteraction = 0.03), waist circumference (Pinteraction = 0.008) and cholesterol (Pinteraction = 0.04) level. Accordingly, higher consumption of protein or fat based foods constitute high amount of AGEs and heterozygote genotype for FADS2 tended to show lower level of AGEs content. These findings address further investigation to develop new approaches for nutritional interventions.

Funder

Tabriz University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3