The effect of three-layer liner on the jet formation and penetration capability of shaped charge jet

Author:

Hao Zhiwei,Wang Zhijun,Wang Yifan,Duan Conghui,Ji Qing

Abstract

AbstractIn order to solve the problem of insufficient penetration ability of common liner, a new three-layer liner was proposed. AUTODYN software was used to simulate the efflux forming process of three-layer liner. The influence of four different impact impedance liner materials and different thickness ratio of three-layer liner on efflux performance was studied. In order to study the penetration ability of shaped charge to semi-infinite target plate, the penetration calculation of the target plate was carried out by taking several standoff under different thickness ratios. The optimal thickness ratio of three-layer liner was determined by studying the penetration depth and opening size of the target plate. The results show: By comparing the matching of liner materials with different impact impedances, the head velocity, effective length, total energy, total kinetic energy and effective jet mass of the jet formed when the three-layer liner material is AL 2024, copper and nickel from the outside to the inside are the best. In the analysis of the matching of the thickness ratio of the three-layer liner, the key to the jet forming is the thickness ratio of the outer liner. Within a certain range, the greater the proportion of the thickness of the outer liner, the better the jet forming; when the material of the three-layer liner is AL 2024-copper-nickel from outside to inside, the thickness ratio of the liner is 4/1/1 from outside to inside, and the jet forming is the best. The maximum penetration depth of the shaped charge with a thickness ratio of 1/1/4 from the outside to the inside of the three-layer liner is 395.5 mm, which is 52.3% higher than that of the shaped charge with a double-layer liner. Compared with the shaped charge with single-layer liner, the penetration depth is increased by 62.6%. When the thickness ratio of the three-layer liner is 1/1/4 from the outside to the inside, the maximum entrance diameter of the target plate is 14.3 mm, which is the same as that of the shaped charge with the double-layer liner. Compared with the shaped charge with single-layer liner, the entrance diameter is in-creased by 14.4%.

Funder

Graduate Innovation Project of Shanxi Province

School of Mechanical and Electrical Engineering of North University of China 2022 Graduate Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3