Abstract
AbstractBighead carp (Hypophthalmichthys nobilis), silver carp (H. molitrix), black carp (Mylopharyngodon piceus), and grass carp (Ctenopharyngodon idella), are invasive species in North America. However, they hold significant economic importance as food sources in China. The drifting stage of carp eggs has received great attention because egg survival rate is strongly affected by river hydrodynamics. In this study, we explored egg-drift dynamics using computational fluid dynamics (CFD) models to infer potential egg settling zones based on mechanistic criteria from simulated turbulence in the Lower Missouri River. Using an 8-km reach, we simulated flow characteristics with four different discharges, representing 45–3% daily flow exceedance. The CFD results elucidate the highly heterogeneous spatial distribution of flow velocity, flow depth, turbulence kinetic energy (TKE), and the dissipation rate of TKE. The river hydrodynamics were used to determine potential egg settling zones using criteria based on shear velocity, vertical turbulence intensity, and Rouse number. Importantly, we examined the difference between hydrodynamic-inferred settling zones and settling zones predicted using an egg-drift transport model. The results indicate that hydrodynamic inference is useful in determining the ‘potential’ of egg settling, however, egg drifting paths should be taken into account to improve prediction. Our simulation results also indicate that the river turbulence does not surpass the laboratory-identified threshold to pose a threat to carp eggs.
Funder
United States Geological Survey (USGS) Aquatic Invasive Species (AIS) Competitive Grants Program
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Irons, K. S., Sass, G. G., Mcclelland, M. A. & Stafford, J. D. Reduced condition factor of two native fish species coincident with invasion of non-native Asian carps in the Illinois River, USA—is this evidence for competition and reduced fitness?. J. Fish Biol. 71, 258–273. https://doi.org/10.1111/j.1095-8649.2007.01670.x (2007).
2. Cudmore, B., Mandrak, N. E., Dettmers, J. M., Chapman, D. C., & Kolar, C. S. Binational ecological risk assessment of bigheaded carps (Hypophthalmichthys spp.) for the Great Lakes Basin. Technical Report 2011/114 (2012).
3. Chick, J. H., Gibson-Reinemer, D. K., Soeken-Gittinger, L. & Casper, A. F. Invasive silver carp is empirically linked to declines of native sport fish in the Upper Mississippi River system. Biol. Invasions 22(2), 723–734. https://doi.org/10.1007/s10530-019-02124-4 (2020).
4. Chapman, D. C. et al. Bigheaded carps of the Yangtze and Mississippi Rivers. In Fishery Resources, Environment, and Conservation in the Mississippi and Yangtze (Changjiang) River Basins (eds. Chen, Y. et al.) 113–127 (American Fisheries Society, 2016). https://doi.org/10.47886/9781934874448.
5. Tang, C., Yan, Q., Li, W., Yang, X. & Zhang, S. Impact of dam construction on the spawning grounds of the four major Chinese carps in the three gorges reservoir. J. Hydrol. 609, 127694. https://doi.org/10.1016/j.jhydrol.2022.127694 (2022).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献