A novel model incorporating quantitative contrast-enhanced ultrasound into PI-RADSv2-based nomogram detecting clinically significant prostate cancer

Author:

Huang Kaifeng,Luo Li,Hong Ruixia,Zhao Huai,Li Ying,Jiang Yaohuang,Feng Yujie,Fu Qihuan,Zhou Hang,Li Fang

Abstract

AbstractThe diagnostic accuracy of clinically significant prostate cancer (csPCa) of Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) is limited by subjectivity in result interpretation and the false positive results from certain similar anatomic structures. We aimed to establish a new model combining quantitative contrast-enhanced ultrasound, PI-RADSv2, clinical parameters to optimize the PI-RADSv2-based model. The analysis was conducted based on a data set of 151 patients from 2019 to 2022, multiple regression analysis showed that prostate specific antigen density, age, PI-RADSv2, quantitative parameters (rush time, wash-out area under the curve) were independent predictors. Based on these predictors, we established a new predictive model, the AUCs of the model were 0.910 and 0.879 in training and validation cohort, which were higher than those of PI-RADSv2-based model (0.865 and 0.821 in training and validation cohort). Net Reclassification Index analysis indicated that the new predictive model improved the classification of patients. Decision curve analysis showed that in most risk probabilities, the new predictive model improved the clinical utility of PI-RADSv2-based model. Generally, this new predictive model showed that quantitative parameters from contrast enhanced ultrasound could help to improve the diagnostic performance of PI-RADSv2 based model in detecting csPCa.

Funder

Scientific and Technological Research Program of Chongqing Municipal Education Commission, China

Natural Science Foundation of Chongqing ,China

the Fundamental Research Funds for the Central University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3