Interactions between genes altered during cardiotoxicity and neurotoxicity in zebrafish revealed using induced network modules analysis

Author:

Agarwal Manusmriti,Sharma Ankush,Kagoo R. Andrea,Bhargava Anamika

Abstract

AbstractAs the manufacturing and development of new synthetic compounds increase to keep pace with the expanding global demand, adverse health effects due to these compounds are emerging as critical public health concerns. Zebrafish have become a prominent model organism to study toxicology due to their genomic similarity to humans, optical clarity, well-defined developmental stages, short generation time, and cost-effective maintenance. It also provides a shorter time frame for in vivo toxicology evaluation compared to the mammalian experimental systems. Here, we used meta-analysis to examine the alteration in genes during cardiotoxicity and neurotoxicity in zebrafish, caused by chemical exposure of any kind. First, we searched the literature comprehensively for genes that are altered during neurotoxicity and cardiotoxicity followed by meta-analysis using ConsensusPathDB. Since constant communication between the heart and the brain is an important physiological phenomenon, we also analyzed interactions among genes altered simultaneously during cardiotoxicity and neurotoxicity using induced network modules analysis in ConsensusPathDB. We observed inflammation and regeneration as the major pathways involved in cardiotoxicity and neurotoxicity. A large number of intermediate genes and input genes anchored in these pathways are molecular regulators of cell cycle progression and cell death and are implicated in tumor manifestation. We propose potential predictive biomarkers for neurotoxicity and cardiotoxicity and the major pathways potentially implicated in the manifestation of a particular toxicity phenotype.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3