Author:
Aono Alexandre Hild,Francisco Felipe Roberto,Souza Livia Moura,Gonçalves Paulo de Souza,Scaloppi Junior Erivaldo J.,Le Guen Vincent,Fritsche-Neto Roberto,Gorjanc Gregor,Quiles Marcos Gonçalves,de Souza Anete Pereira
Abstract
AbstractRubber tree (Hevea brasiliensis) is the main feedstock for commercial rubber; however, its long vegetative cycle has hindered the development of more productive varieties via breeding programs. With the availability of H. brasiliensis genomic data, several linkage maps with associated quantitative trait loci have been constructed and suggested as a tool for marker-assisted selection. Nonetheless, novel genomic strategies are still needed, and genomic selection (GS) may facilitate rubber tree breeding programs aimed at reducing the required cycles for performance assessment. Even though such a methodology has already been shown to be a promising tool for rubber tree breeding, increased model predictive capabilities and practical application are still needed. Here, we developed a novel machine learning-based approach for predicting rubber tree stem circumference based on molecular markers. Through a divide-and-conquer strategy, we propose a neural network prediction system with two stages: (1) subpopulation prediction and (2) phenotype estimation. This approach yielded higher accuracies than traditional statistical models in a single-environment scenario. By delivering large accuracy improvements, our methodology represents a powerful tool for use in Hevea GS strategies. Therefore, the incorporation of machine learning techniques into rubber tree GS represents an opportunity to build more robust models and optimize Hevea breeding programs.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献