Predicting demographics from meibography using deep learning

Author:

Wang Jiayun,Graham Andrew D.,Yu Stella X.,Lin Meng C.

Abstract

AbstractThis study introduces a deep learning approach to predicting demographic features from meibography images. A total of 689 meibography images with corresponding subject demographic data were used to develop a deep learning model for predicting gland morphology and demographics from images. The model achieved on average 77%, 76%, and 86% accuracies for predicting Meibomian gland morphological features, subject age, and ethnicity, respectively. The model was further analyzed to identify the most highly weighted gland morphological features used by the algorithm to predict demographic characteristics. The two most important gland morphological features for predicting age were the percent area of gland atrophy and the percentage of ghost glands. The two most important morphological features for predicting ethnicity were gland density and the percentage of ghost glands. The approach offers an alternative to traditional associative modeling to identify relationships between Meibomian gland morphological features and subject demographic characteristics. This deep learning methodology can currently predict demographic features from de-identified meibography images with better than 75% accuracy, a number which is highly likely to improve in future models using larger training datasets, which has significant implications for patient privacy in biomedical imaging.

Funder

Roberta Smith Research Fund

UCB-CRC Unrestricted Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3