Multitechnique characterization of secondary minerals near HI-SEAS, Hawaii, as Martian subsurface analogues

Author:

Mulder Sebastian J.ORCID,van Ruitenbeek Frank J. A.,Foing Bernard H.,Sánchez-Román Mónica

Abstract

AbstractSecondary minerals in lava tubes on Earth provide valuable insight into subsurface processes and the preservation of biosignatures on Mars. Inside lava tubes near the Hawaii-Space Exploration and Analog Simulation (HI-SEAS) habitat on the northeast flank of Mauna Loa, Hawaii, a variety of secondary deposits with distinct morphologies were observed consisting of mainly sodium sulphate powders, gypsum crystalline crusts, and small coralloid speleothems that comprise opal and calcite layers. These secondary deposits formed as a result of hydrological processes shortly after the formation and cooling of the lava tubes and are preserved over long periods of time in relatively dry conditions. The coralloid speleothem layers are likely related to wet and dry periods in which opal and calcite precipitates in cycles. Potential biosignatures seem to have been preserved in the form of porous stromatolite-like layers within the coralloid speleothems. Similar secondary deposits and lava tubes have been observed abundantly on the Martian surface suggesting similar formation mechanisms compared to this study. The origin of secondary minerals from tholeiitic basalts together with potential evidence for microbial processes make the lava tubes near HI-SEAS a relevant analog for Martian surface and subsurface environments.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3