Comparative analysis of some evolutionary-based models in optimization of dam reservoirs operation

Author:

Sharifi Mohammad Reza,Akbarifard Saeid,Qaderi Kourosh,Madadi Mohamad Reza

Abstract

AbstractDeriving optimal operation policies for multi-reservoir systems is a complex engineering problem. It is necessary to employ a reliable technique to efficiently solving such complex problems. In this study, five recently-introduced robust evolutionary algorithms (EAs) of Harris hawks optimization algorithm (HHO), seagull optimization algorithm (SOA), sooty tern optimization algorithm (STOA), tunicate swarm algorithm (TSA) and moth swarm algorithm (MSA) were employed, for the first time, to optimal operation of Halilrood multi-reservoir system. This system includes three dams with parallel and series arrangements simultaneously. The results of mentioned algorithms were compared with two well-known methods of genetic algorithm (GA) and particle swarm optimization (PSO) algorithm. The objective function of the optimization model was defined as the minimization of total deficit over 223 months of reservoirs operation. Four performance criteria of reliability, resilience, vulnerability and sustainability were used to compare the algorithms’ efficiency in optimization of this multi-reservoir operation. It was observed that the MSA algorithm with the best value of objective function (6.96), the shortest CPU run-time (6738 s) and the fastest convergence rate (< 2000 iterations) was the superior algorithm, and the HHO algorithm placed in the next rank. The GA, and the PSO were placed in the middle ranks and the SOA, and the STOA placed in the lowest ranks. Furthermore, the comparison of utilized algorithms in terms of sustainability index indicated the higher performance of the MSA in generating the best operation scenarios for the Halilrood multi-reservoir system. The application of robust EAs, notably the MSA algorithm, to improve the operation policies of multi-reservoir systems is strongly recommended to water resources managers and decision-makers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3