Decay pattern of SARS-CoV-2 RNA surface contamination in real residences

Author:

Lin Nan,Zhang Bo,Shi Rong,Gao Yu,Wang Zixia,Ling Zhiyi,Tian Ying

Abstract

AbstractThe COVID-19 pandemic has provided valuable lessons that deserve deep thought to prepare for the future. The decay pattern of surface contamination by SARS-CoV-2 RNA in the residences of COVID-19 patients is important but still unknown. We collected 2,233 surface samples from 21 categories of objects in 141 residences of COVID-19 patients in Shanghai when attacked by the omicron variant in spring 2022. Several characteristics of the patients and their residences were investigated to identify relevant associations. The decay of contamination was explored to determine the persistence. Approximately 8.7% of the surface samples were tested positive for SARS-CoV-2 RNA. The basin, water tap, and sewer inlet had the highest positive rates, all exceeding 20%. Only time was significantly associated with the level of surface contamination with SARS-CoV-2, showing a negative association. The decrease fit a first-order decay model with a decay rate of 0.77 ± 0.07 day−1, suggesting a 90% reduction in three days. Positive associations between the cumulative number of newly diagnosed patients in the same building and the positive rate of SARS-CoV-2 RNA in the public corridor were significant during the three days. Our results, in conjunction with the likely lower infectivity or viability, demonstrate that fomite transmission played a limited role in COVID-19 spread. The time determined SARS-CoV-2 RNA contamination, which was reduced by three days. This study is the first to show the decay patterns of SARS-CoV-2 contamination in real residential environments, providing insight into the patterns of transmission, as well as community-based prevention and control of similar threats.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

Reference48 articles.

1. WHO. WHO Coronavirus (COVID-19) Dashboard. (2023). https://covid19.who.int/. Accessed 18 Oct 2023.

2. WHO. Coronavirus Disease (COVID-19): How is it Transmitted? (2021). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted. Accessed 9 Jun 2022.

3. Yao, M. SARS-CoV-2 aerosol transmission and detection. Eco-Environ. Health 1(1), 3–10 (2022).

4. Edward, D. G. F. Resistance of influenza virus to drying and its demonstration on dust. Lancet 2, 664–666 (1941).

5. US CDC. Science Brief: SARS-CoV-2 and Surface (Fomite) Transmission for Indoor Community Environments. (2021). https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/surfacetransmission.html. Accessed 9 Jun 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3