Author:
Tubau-Juni Nuria,Bassaganya-Riera Josep,Leber Andrew,Zoccoli-Rodriguez Victoria,Kronsteiner Barbara,Viladomiu Monica,Abedi Vida,Philipson Casandra W.,Hontecillas Raquel
Abstract
AbstractHelicobacter pylori is a gram-negative bacterium that persistently colonizes the human stomach by inducing immunoregulatory responses. We have used a novel platform that integrates a bone marrow-derived macrophage and live H. pylori co-culture with global time-course transcriptomics analysis to identify new regulatory genes based on expression patterns resembling those of genes with known regulatory function. We have used filtering criteria based on cellular location and novelty parameters to select 5 top lead candidate targets. Of these, Plexin domain containing 2 (Plxdc2) was selected as the top lead immunoregulatory target. Loss of function studies with in vivo models of H. pylori infection as well as a chemically-induced model of colitis, confirmed its predicted regulatory function and significant impact on modulation of the host immune response. Our integrated bioinformatics analyses and experimental validation platform has enabled the discovery of new immunoregulatory genes. This pipeline can be used for the identification of genes with therapeutic applications for treating infectious, inflammatory, and autoimmune diseases.
Funder
Defense Threat Reduction Agency
NIMML Institute
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献