Abstract
Abstract
For cancers, such as common solid tumours, variants in the genome give a selective growth advantage to certain cells. It has recently been argued that the mean count of coding single nucleotide variants acting as disease-drivers in common solid tumours is frequently small in size, but significantly variable by cancer type (hypermutation is excluded from this study). In this paper we investigate this proposal through the use of integrative machine-learning-based classifiers we have proposed recently for predicting the disease-driver status of single nucleotide variants (SNVs) in the human cancer genome. We find that predicted driver counts are compatible with this proposal, have similar variabilities by cancer type and, to a certain extent, the drivers are identifiable by these machine learning methods. We further discuss predicted driver counts stratified by stage of disease and driver counts in non-coding regions of the cancer genome, in addition to driver-genes.
Funder
RCUK | Engineering and Physical Sciences Research Council
RCUK | Medical Research Council
Cancer Research UK
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献