Author:
Srivastava Priya,Kumar Ramesh,Ronchiya Hemant,Bag Monojit
Abstract
AbstractThe numerous assorted accounts of the fundamental questions of ion migration in hybrid perovskites are making the picture further intricate. The review of photo-induced ion migration using small perturbation frequency domain techniques other than impedance spectroscopy is more crucial now. Herein, we probe into this by investigating perovskite–electrolyte (Pe–E) and polymer-aqueous electrolyte (Po–aqE) interface using intensity modulated photocurrent spectroscopy (IMPS) in addition to photoelectrochemical impedance spectroscopy (PEIS). We reported that the electronic-ionic interaction in hybrid perovskites including the low-frequency ion/charge transfer and recombination kinetics at the interface leads to the spiral feature in IMPS Nyquist plot of perovskite-based devices. This spiral trajectory for the perovskite-electrolyte interface depicts three distinct ion kinetics going on at the different time scales which can be more easily unveiled by IMPS rather than PEIS. Hence, IMPS is a promising alternative to PEIS. We used Peter’s method of interpretation of IMPS plot in photoelectrochemistry to estimate charge transfer efficiency $$({Q}_{ste})$$
(
Q
ste
)
from the Rate Constant Model. The $${Q}_{ste}$$
Q
ste
at low-frequency for Pe–E interface exceeds unity due to ion migration induced modified potential across the perovskite active layer. Hence, ion migration and mixed electronic-ionic conductivity of hybrid perovskites are responsible for the extraordinary properties of this material.
Funder
Ministry of Education, India
Council of Scientific and Industrial Research, India
Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献