Author:
Al Ali Musaddiq,Shimoda Masatoshi,Benaissa Brahim,Kobayashi Masakazu,Takeuchi Tsunehiro,Al-Shawk Ameer,Ranjbar Sina
Abstract
AbstractThis study investigates the application of the Metaheuristic Aided Structural Topology Optimization (MASTO) method as a novel approach to address the multiphysics design challenge of creating a heat sink with both high heat conductivity and minimal Electromagnetic Interference (EMI). A distinctive 2D layout with elongated fins is examined for electromagnetic traits, highlighting resonance-related EMI concerns. MASTO proves to be a valuable tool for navigating the complex design space, yielding thoughtfully optimized solutions that harmonize efficient heat dissipation with effective EMI control. By merging simulation findings with practical observations, this study underscores the potential of the MASTO method in achieving effective designs for intricate multiphysics optimization problems. Specifically, the method's capacity to address the complex interplay of heat transfer with convection and the suppression of electromagnetic emissions is showcased. Moreover, the study demonstrates the feasibility of translating these solutions into tangible outcomes through manufacturing processes.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献