Sustainable colonization of Mars using shape optimized structures and in situ concrete

Author:

Soureshjani Omid Karimzade,Massumi Ali,Nouri Gholamreza

Abstract

AbstractThe major obstacle to Martian colonization is the mission cost which requires significant reduction. From the structural engineering point of view, importing materials and structural elements from Earth or massive excavations on the surface of Mars require an enormous amount of energy; thus, inflatable and under-surface structures as the main options for Martian colonization seem unrealistically expensive. Construction of affordable buildings onsite using only in situ sources may represent an ideal solution for Martian colonization. On the other hand, solar energy, at the early stage of colonization, would be the only available, practical, and low-cost energy source on Mars. Though, for sustainable and broad colonization, the energy required for construction and the construction cost should be minimized. Here, we propose three types of simple (relatively optimized), perforated, and algorithmic shape-optimized Martian structures to minimize the material and energy required for construction as well as the construction cost using only in situ resources. These structural forms can be considered remarkable steps towards sustainable structural construction and colonization on Mars. Also, these innovative structures were designed to minimize the tensile stress (maximize the compressive stress) and enable the use of in situ concrete. Our data indicate that compared to our previous study, the material and energy required for construction as well as the construction cost can be reduced by more than 50%. Acceptance criteria and limitations appropriate to the Martian environment, and desirable structural and material behaviors were defined to evaluate whether or not the behavior of a structure under the applied loads and conditions will be acceptable. To detect potential issues for onsite construction and evaluate the geometry of the models, a 1:200 3D model of the best structural form was printed.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference61 articles.

1. Alroy, J. Dynamics of origination and extinction in the marine fossil record. Proc. Natl. Acad. Sci. 105(Supplement 1), 11536–11542 (2008).

2. Kardashev, N. S. Transmission of information by extraterrestrial civilizations. Soviet Astron. 8, 217 (1964).

3. Kaku, M. The Future of Humanity: Terraforming Mars, Interstellar Travel, Immortality, and Our Destiny Beyond (Penguin, 2018).

4. Kaku, M. Parallel Worlds: A Journey Through Creation, Higher Dimmensions, and the Future of the Cosmos (Doubleday Books, 2005).

5. Knappenberger, C. An Economic Analysis of Mars Exploration and Colonization (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3