A study of analyzing longitudinal dynamic behavior of a double-rod system with longitudinal nonlinear supports

Author:

Zhao Yuhao,Cui Haijian

Abstract

AbstractIn engineering, shafting systems are typically subjected to longitudinal vibration excitations, which may result in unwanted vibration. To study the control of longitudinal vibration in shafting systems, they can be simplified to rod structures. Currently, engineers have attempted to apply the nonlinear principle to design nonlinear supports to control the vibration of flexible structures. However, the flexible structures referenced in the literature are usually composed of a single component, which limits the application of nonlinear supports to more complex structures. To explore the potential application of nonlinear supports in marine engineering, this work introduces a longitudinal vibration prediction model for a double-rod system equipped with longitudinal nonlinear supports. The generalized Hamilton principle is used to derive the governing equations for the double-rod system with longitudinal nonlinear supports. The longitudinal vibration responses of the double-rod system are numerically solved using the Galerkin truncation method. The numerical results confirm that a 1-term truncation number guarantees the stability of the longitudinal vibration prediction model. Under certain conditions, the longitudinal vibration responses are significantly affected by longitudinal nonlinear supports. It is recommended to install longitudinal nonlinear supports on both Rod 1 and Rod 2 simultaneously to suppress vibration in the first two main resonance orders. With reasonable excitations, the vibration state and magnitudes of the double-rod system can be effectively controlled by adjusting the longitudinal nonlinear supports. Complex longitudinal vibration responses are more readily induced by altering the parameters of the longitudinal nonlinear support installed on Rod 1. Choosing appropriate parameters for the nonlinear supports on Rod 1 and Rod 2 positively contributes to the reduction of vibration in the double-rod system.

Funder

the Fund of Natural Science Special (Special Post) Research Foundation of Guizhou University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3