Author:
Taghavi Mohammadrasoul,Mosallaei Hossein
Abstract
AbstractLaser-driven metasails can enable reaching velocities far beyond the chemically propelled spacecrafts, which accounts for precise engineering of the acceleration and the stability degree of the lightsail across the Doppler-broadened band. All-dielectric metasurfaces have shown great promise toward the realization of low-weight photonic platforms suitable for integrating multiple functionalities. The most paramount factor in the stability analysis of lightsail is the coupling between displacement and rotation, which mainly determines the durability of the nanocraft against displacement and rotation offsets. In this work, the marginal stability conditions of laser-propelled lightsails have been extended by replacing the reflective elements near the edges portions of the sail with broad-band transmissive elements and applying a multi-objective genetic algorithm (GA) optimization to the proposed configuration. The presented design not only remarkably suppresses the amplitude of the oscillatory motion but also can decrease the center of the mass requirement of the lightsail while maintaining an acceptable acceleration time. Next, a configuration where the payload is at the non-illuminating side of the dual-portion sail is proposed to protect the payload from the intense laser beam. In this case, a spherical phase profile is imprinted across the reflective elements while it is being propelled by a multi-modal beam.
Funder
Breakthrough Initiatives, a division of the Breakthrough Prize Foundation
U.S. Air Force Office of Scientific Research (AFOSR),
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献