1. Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. Counterfactual multi-agent policy gradients. In Proc. Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018 (eds. McIlraith, S. A. & Weinberger, K. Q.) 2974–2982 (AAAI Press, 2018).
2. Brown, N., Lerer, A., Gross, S. & Sandholm, T. Deep counterfactual regret minimization. In Proc. 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA, Volume 97 of Proc. Machine Learning Research (eds. Chaudhuri, K. & Salakhutdinov, R.) 793–802 (PMLR, 2019).
3. Sun, C., Karlsson, P., Wu, J., Tenenbaum, J. B. & Murphy, K. Predicting the present and future states of multi-agent systems from partially-observed visual data. In International Conference on Learning Representations. https://openreview.net/forum?id=r1xdH3CcKX (2019).
4. Taylor, S. J. Modelling Financial Time Series. Number 6578 in World Scientific Books (World Scientific Publishing, 2007).
5. Sezer, O. B., Gudelek, M. U. & Özbayoglu, A. M. Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. CoRR. http://arxiv.org/abs/1911.13288 (2019).