Minimization of energy transduction confers resistance to phosphine in the rice weevil, Sitophilus oryzae

Author:

Kim KyeongnamORCID,Yang Jeong Oh,Sung Jae-Yoon,Lee Ji-Young,Park Jeong Sun,Lee Heung-SikORCID,Lee Byung-Ho,Ren YonglinORCID,Lee Dong-WooORCID,Lee Sung-EunORCID

Abstract

Abstract Infestation of phosphine (PH3) resistant insects threatens global grain reserves. PH3 fumigation controls rice weevil (Sitophilus oryzae) but not highly resistant insect pests. Here, we investigated naturally occurring strains of S. oryzae that were moderately resistant (MR), strongly resistant (SR), or susceptible (wild-type; WT) to PH3 using global proteome analysis and mitochondrial DNA sequencing. Both PH3 resistant (PH3–R) strains exhibited higher susceptibility to ethyl formate-mediated inhibition of cytochrome c oxidase than the WT strain, whereas the disinfectant PH3 concentration time of the SR strain was much longer than that of the MR strain. Unlike the MR strain, which showed altered expression levels of genes encoding metabolic enzymes involved in catabolic pathways that minimize metabolic burden, the SR strain showed changes in the mitochondrial respiratory chain. Our results suggest that the acquisition of strong PH3 resistance necessitates the avoidance of oxidative phosphorylation through the accumulation of a few non-synonymous mutations in mitochondrial genes encoding complex I subunits as well as nuclear genes encoding dihydrolipoamide dehydrogenase, concomitant with metabolic reprogramming, a recognized hallmark of cancer metabolism. Taken together, our data suggest that reprogrammed metabolism represents a survival strategy of SR insect pests for the compensation of minimized energy transduction under anoxic conditions. Therefore, understanding the resistance mechanism of PH3–R strains will support the development of new strategies to control insect pests.

Funder

Ministry of Science, ICT and Future Planning

Animal and Plant Quarantine Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3