Author:
Rasouli Sajad,Zabihi Amirreza,Fasihi Mohammad
Abstract
AbstractNano-silicon carbide (SiC) as a high thermal conductive material with an intrinsic thermal conductivity of ~ 490 W/m K was used to improve the cure characteristics, kinetics, and thermodynamics of curing reaction of styrene-butadiene rubber/butadiene rubber (SBR/BR) compounds. The considerations were carried out by non-isothermal differential scanning calorimetry (DSC). Results revealed that the presence of SiC shifted the peak and end temperatures of the curing peak to lower temperatures. The calculated activation energy of the curing reaction based on the Kissinger approach showed a descent from 409.8 to 93.8 kJ/mol by adding SiC from 0 to 7.5 phr (part per hundred rubber). Moreover, the obtained Gibbs free energy variation and equilibrium constant of the curing reaction proved that the reaction was absolutely forced and irreversible, which can be increasingly characterized as a one-way process. According to the results, SiC accelerated the curing reaction because of the increment of heat transfer into the compound. This phenomenon caused the increment of enthalpy variation of the vulcanization reaction, particularly at the SiC content of 5 phr. The achieved kinetic parameters via fitting an autocatalytic model based on the Sestàk–Berggren model by the Màlek method to describe the kinetics of the curing reaction indicated that the SiC filler had a catalytic effect on the curing reaction of SBR/BR-SiC, particularly after 2.5 phr of the filler.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献