Synergistic performance of a new bimetallic complex supported on magnetic nanoparticles for Sonogashira and C–N coupling reactions

Author:

Nasseri Fatemeh,Nasseri Mohammad Ali,Kassaee Mohamad Zaman,Yavari Issa

Abstract

AbstractThis paper describes the synthesis of a novel Cu–Ni bimetallic system comprising of magnetic nanoparticles, as the core, and 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole (4-ABPT), as a conjugated bridge, between nickel and copper species. With low Cu and Ni loading (0.06 mol% Ni, 0.08 mol% Cu), the resulting Fe3O4@SiO2@4-ABPT/Cu–Ni showed to be a highly efficient catalyst for the Sonogashira and C–N cross-coupling reactions. The developed catalyst was well characterized by FT-IR, XRD, EDX-mapping, FE-SEM, TEM, ICP, VSM, TGA/DTG/DTA, LSV, and XPS techniques. Fe3O4@SiO2@4-ABPT/Cu–Ni nanocatalyst was compatible with a wide range of amines and aryl halides in the Sonogashira and C–N cross-coupling reactions and offered desired coupling products in high to excellent yields under palladium- and solvent-free conditions. Based on the XPS results, the 4-ABPT ligand can adjust electron transfer between Ni and Cu in Fe3O4@SiO2@4-ABPT/Cu–Ni, promoting the formation and stabilization of Cu+ and Ni3+ species. Electronic interactions and the synergistic effect between these metals increased the selectivity and activity of Fe3O4@SiO2@4-ABPT/Cu–Ni catalyst in the Sonogashira and C–N cross-coupling reactions compared with its monometallic counterparts. Additionally, the magnetic properties of Fe3O4@SiO2@4-ABPT/Cu–Ni facilitated its separation from the reaction mixture, promoting its reuse for several times with no significant loss in its catalytic activity or performance.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3