Variation of Burkholderia cenocepacia cell wall morphology and mechanical properties during cystic fibrosis lung infection, assessed by atomic force microscopy

Author:

Hassan A. AmirORCID,Vitorino Miguel V.ORCID,Robalo Tiago,Rodrigues Mário S.ORCID,Sá-Correia IsabelORCID

Abstract

Abstract The influence that Burkholderia cenocepacia adaptive evolution during long-term infection in cystic fibrosis (CF) patients has on cell wall morphology and mechanical properties is poorly understood despite their crucial role in cell physiology, persistent infection and pathogenesis. Cell wall morphology and physical properties of three B. cenocepacia isolates collected from a CF patient over a period of 3.5 years were compared using atomic force microscopy (AFM). These serial clonal variants include the first isolate retrieved from the patient and two late isolates obtained after three years of infection and before the patient’s death with cepacia syndrome. A consistent and progressive decrease of cell height and a cell shape evolution during infection, from the typical rods to morphology closer to cocci, were observed. The images of cells grown in biofilms showed an identical cell size reduction pattern. Additionally, the apparent elasticity modulus significantly decreases from the early isolate to the last clonal variant retrieved from the patient but the intermediary highly antibiotic resistant clonal isolate showed the highest elasticity values. Concerning the adhesion of bacteria surface to the AFM tip, the first isolate was found to adhere better than the late isolates whose lipopolysaccharide (LPS) structure loss the O-antigen (OAg) during CF infection. The OAg is known to influence Gram-negative bacteria adhesion and be an important factor in B. cenocepacia adaptation to chronic infection. Results reinforce the concept of the occurrence of phenotypic heterogeneity and adaptive evolution, also at the level of cell size, form, envelope topography and physical properties during long-term infection.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3