Bismuth sulfoiodide (BiSI) nanorods: synthesis, characterization, and photodetector application

Author:

Mistewicz Krystian,Das Tushar Kanti,Nowacki Bartłomiej,Smalcerz Albert,Kim Hoe Joon,Hajra Sugato,Godzierz Marcin,Masiuchok Olha

Abstract

AbstractThe nanorods of bismuth sulfoiodide (BiSI) were synthesized at relatively low temperature (393 K) through a wet chemical method. The crystalline one-dimensional (1D) structure of the BiSI nanorods was confirmed using high resolution transmission microscopy (HRTEM). The morphology and chemical composition of the material were examined by applying scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The average diameter of 126(3) nm and length of 1.9(1) µm of the BiSI nanorods were determined. X-ray diffraction (XRD) revealed that prepared material consists of a major orthorhombic BiSI phase (87%) and a minor amount of hexagonal Bi13S18I2 phase (13%) with no presence of other residual phases. The direct energy band gap of 1.67(1)  eV was determined for BiSI film using diffuse reflectance spectroscopy (DRS). Two types of photodetectors were constructed from BiSI nanorods. The first one was traditional photoconductive device based on BiSI film on stiff glass substrate equipped with Au electrodes. An influence of light intensity on photocurrent response to monochromatic light (λ = 488 nm) illumination was studied at a constant bias voltage. The novel flexible photo-chargeable device was the second type of prepared photodetectors. It consisted of BiSI film and gel electrolyte layer sandwiched between polyethylene terephthalate (PET) substrates coated with indium tin oxide (ITO) electrodes. The flexible self-powered BiSI photodetector exhibited open-circuit photovoltage of 68 mV and short-circuit photocurrent density of 0.11 nA/cm2 under light illumination with intensity of 0.127 W/cm2. These results confirmed high potential of BiSI nanorods for use in self-powered photodetectors and photo-chargeable capacitors.

Funder

Silesian University of Technology

Daegu Gyeongbuk Institute of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3