Association rule mining of aircraft event causes based on the Apriori algorithm

Author:

Chen Huaqun,Yang Minghui,Tang Xie

Abstract

AbstractTo reveal complex causes of aircraft events, this paper aims to mine association rules between the trigger probability and relative strength via a modified Apriori algorithm. Clustering is adopted for data preprocessing and TF–IDF value calculation. Causative item sets of aircraft events are obtained based on the accident causation 2–4 model and are coded to establish code indicators. By avoiding the use of statistical methodologies to resolve not-a-number (NaN) values for altering the interrelations among causes, an enhancement in the Apriori algorithm is proposed by considering frequent items. By extracting frequent patterns, in this paper, all the association rules that satisfy three perspectives (support, confidence and lift) are determined by constantly generating and pruning candidate item sets. A network graph is used to visualize the association rules between different unsafe events and all types of causes. Finally, 9835 representative pieces of data, including general unsafe events, general incidents and serious incidents from the Southwest Air Traffic Management Bureau, are selected for analysis. The results show that improper energy allocation, poor conflict resolution ability, inadequate onsite management duties, adoption of a luck mentality, and occurrence of controller oversight are highly correlated with general unsafe events, and failure to rectify incorrect recitation is notably correlated with general incidents, while inadequate manual promotion, lack of conflict judgement and insufficient safety management are strongly correlated with serious incidents. This study quantitatively reveals the potential patterns and characteristics of mutual interactions among various types of historical aircraft events and highlights directions for controllable prevention and prediction of aircraft events.

Funder

the Key Research and Development Project of Sichuan Province

the General Program of Civil Aviation Flight University of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3