Deep learning model for classification and bioactivity prediction of essential oil-producing plants from Egypt

Author:

El-Attar Noha E.,Hassan Mohamed K.,Alghamdi Othman A.,Awad Wael A.

Abstract

AbstractReliance on deep learning techniques has become an important trend in several science domains including biological science, due to its proven efficiency in manipulating big data that are often characterized by their non-linear processes and complicated relationships. In this study, Convolutional Neural Networks (CNN) has been recruited, as one of the deep learning techniques, to be used in classifying and predicting the biological activities of the essential oil-producing plant/s through their chemical compositions. The model is established based on the available chemical composition’s information of a set of endemic Egyptian plants and their biological activities. Another type of machine learning algorithms, Multiclass Neural Network (MNN), has been applied on the same Essential Oils (EO) dataset. This aims to fairly evaluate the performance of the proposed CNN model. The recorded accuracy in the testing process for both CNN and MNN is 98.13% and 81.88%, respectively. Finally, the CNN technique has been adopted as a reliable model for classifying and predicting the bioactivities of the Egyptian EO-containing plants. The overall accuracy for the final prediction process is reported as approximately 97%. Hereby, the proposed deep learning model could be utilized as an efficient model in predicting the bioactivities of, at least Egyptian, EOs-producing plants.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3