E-DPNCT: an enhanced attack resilient differential privacy model for smart grids using split noise cancellation

Author:

Hafeez Khadija,O’Shea Donna,Newe Thomas,Rehmani Mubashir Husain

Abstract

AbstractHigh frequency reporting of energy consumption data in smart grids can be used to infer sensitive information regarding the consumer’s life style and poses serious security and privacy threats. Differential privacy (DP) based privacy models for smart grids ensure privacy when analysing energy consumption data for billing and load monitoring. However, DP models for smart grids are vulnerable to collusion attack where an adversary colludes with malicious smart meters and un-trusted aggregator in order to get private information from other smart meters. We first show the vulnerability of DP based privacy model for smart grids against collusion attacks to establish the need of a collusion resistant privacy model. Then, we propose an Enhanced Differential Private Noise Cancellation Model for Load Monitoring and Billing for Smart Meters (E-DPNCT) which not only provides resistance against collusion attacks but also protects the privacy of the smart grid data while providing accurate billing and load monitoring. We use differential privacy with a split noise cancellation protocol with multiple master smart meters (MSMs) to achieve collusion resistance. We propose an Enhanced Differential Private Noise Cancellation Model for Load Monitoring and Billing for Smart Meters (E-DPNCT) to protect the privacy of the smart grid data using a split noise cancellation protocol with multiple master smart meters (MSMs) to provide accurate billing and load monitoring and resistance against collusion attacks. We did extensive comparison of our E-DPNCT model with state of the art attack resistant privacy preserving models such as EPIC for collusion attack. We simulate our E-DPNCT model with real time data which shows significant improvement in privacy attack scenarios. Further, we analyze the impact of selecting different sensitivity parameters for calibrating DP noise over the privacy of customer electricity profile and accuracy of electricity data aggregation such as load monitoring and billing.

Funder

Science Foundation Ireland

Higher Education Authority (HEA) under the Human Capital Initiative-Pillar 3 project, Cyberskills.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3