Physiological responses of Holstein calves to heat stress and dietary supplementation with a postbiotic from Aspergillus oryzae

Author:

Ríus A. G.,Kaufman J. D.,Li M. M.,Hanigan M. D.,Ipharraguerre I. R.

Abstract

AbstractIncreased ambient temperature causes heat stress in mammals, which affects physiological and molecular functions. We have recently reported that the dietary administration of a postbiotic from Aspergillus oryzae (AO) improves tolerance to heat stress in fruit flies and cattle. Furthermore, heat-induced gut dysfunction and systemic inflammation have been ameliorated in part by nutritional interventions. The objective of this study was to characterize the phenotypic response of growing calves to heat stress compared to thermoneutral ad libitum fed and thermoneutral feed-restricted counterparts and examining the physiologic alterations associated with the administration of the AO postbiotic to heat-stressed calves with emphasis on intestinal permeability. In this report, we expand previous work by first demonstrating that heat stress reduced partial energetic efficiency of growth in control (45%) but not in AO-fed calves (62%) compared to thermoneutral animals (66%). While heat stress increased 20% the permeability of the intestine, AO postbiotic and thermoneutral treatments did not affect this variable. In addition, AO postbiotic reduced fecal water content relative to thermoneutral and heat stress treatments. Heat stress increased plasma concentrations of serum amyloid A, haptoglobin and lipocalin-2, and administration of AO postbiotic did not ameliorate this effect. In summary, our findings indicated that heat stress led to reduced nutrient-use efficiency and increased systemic inflammation. Results suggest that the AO postbiotic improved energy-use efficiency, water absorption, and the intestinal permeability in heat stress-mediated increase in gut permeability but did not reduce heat stress-mediated rise in markers of systemic inflammation.

Funder

BioZyme Inc

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3