Automated rock mass condition assessment during TBM tunnel excavation using deep learning

Author:

Chen Liang,Liu Zhitao,Su Hongye,Lin Fulong,Mao Weijie

Abstract

AbstractRock mass condition assessment during tunnel excavation is a critical step for the intelligent control of tunnel boring machine (TBM). To address this and achieve automatic detection, a visual assessment system is installed to the TBM and a lager in-situ rock mass image dataset is collected from the water conveyance channel project. The rock mass condition assessment task is transformed into a fine-grain classification task. To fulfill the task, a self-convolution based attention fusion network (SAFN) is designed in this paper. The core of our method is the discovery and fusion of the object attention map within a deep neural network. The network consists of two novel modules, the self-convolution based attention extractor (SAE) module and the self-convolution based attention pooling algorithm (SAP) module. The former is designed to detect the intact rock regions generating the attention map, and the latter is designed to improve the performance of classifier by fusing the attention map that focuses on the intact rock regions. The results of SAFN are evaluated from aspects of interpretability, ablation, accuracy and cross-validation, and it outperforms state-of-the-art models in the rock mass assessment dataset. Furthermore, the dynamic filed test show that our assessment system based on the SAFN model is accurate and efficient for automated classification of rock mass.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3