Electrophysiological and biochemical effect of zinc oxide nanoparticles on heart functions of male Wistar rats

Author:

Hussein Aida AhmedORCID,Moatamed Eman RaafatORCID,El-desoky Mohamed MahmoudORCID,El Khayat Zakaria

Abstract

AbstractZinc oxide nanoparticles (ZnO NPs) are one of the most abundantly used nanomaterials in cosmetics and topical products, and nowadays, they are explored in drug delivery and tissue engineering. Some recent data evidenced that they are responsible for cardiotoxic effects and systemic toxicity. The present study aimed to investigate the toxic effect of ZnO NPs (39 nm) on the heart of Wistar rats and to perform a dose–response relationship using three different dose levels (25, 50, 100 mg/kg bw) of ZnO NPs on the electrocardiogram (ECG) readings, the levels of biochemical function parameters of heart, and the oxidative stress and antioxidant biomarkers. Furthermore, zinc concentration level and histopathological examination of heart tissues were determined. ZnO NPs showed a dose-dependent effect, as the 100 mg/kg bw ZnO NPs treated group showed the most significant changes in ECGs parameters: R–R distance, P–R interval, R and T amplitudes, and increased levels of heart enzymes Creatine Kinase- MB (CK-MB) and Lactate dehydrogenase (LDH). On the other hand, elevated zinc concentration levels, oxidative stress biomarkers MDA and NO, and decreased GSH levels were found also in a dose-dependent manner, the results were supported by impairment in the histopathological structure of heart tissues. While the dose of 100 mg/kg bw of ZnO bulk group showed no significant effects on heart function. The present study concluded that ZnO NPs could induce cardiac dysfunctions and pathological lesions mainly in the high dose.

Funder

Suez University

Publisher

Springer Science and Business Media LLC

Reference53 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3