Robustness and rich clubs in collaborative learning groups: a learning analytics study using network science

Author:

Saqr Mohammed,Nouri Jalal,Vartiainen Henriikka,Tedre Matti

Abstract

AbstractProductive and effective collaborative learning is rarely a spontaneous phenomenon but rather the result of meeting a set of conditions, orchestrating and scaffolding productive interactions. Several studies have demonstrated that conflicts can have detrimental effects on student collaboration. Through the application of network science, and social network analysis in particular, this learning analytics study investigates the concept of group robustness; that is, the capacity of collaborative groups to remain functional despite the withdrawal or absence of group members, and its relation to group performance in the frame of collaborative learning. Data on all student and teacher interactions were collected from two phases of a course in medical education that employed an online learning environment. Visual and mathematical analysis were conducted, simulating the removal of actors and its effect on the group’s robustness and network structure. In addition, the extracted network parameters were used as features in machine learning algorithms to predict student performance. The study contributes findings that demonstrate the use of network science to shed light on essential elements of collaborative learning and demonstrates how the concept and measures of group robustness can increase understanding of the conditions of productive collaborative learning. It also contributes to understanding how certain interaction patterns can help to promote the sustainability or robustness of groups, while other interaction patterns can make the group more vulnerable to withdrawal and dysfunction. The finding also indicate that teachers can be a driving factor behind the formation of rich clubs of well-connected few and less connected many in some cases and can contribute to a more collaborative and sustainable process where every student is included.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3