Characterization of diffractive bifocal intraocular lenses

Author:

Mendroch Damian,Altmeyer Stefan,Oberheide Uwe

Abstract

AbstractMultifocal intraocular lenses incorporate a variety of design considerations, including dimensioning of the base monofocal shape and the diffraction grating. While studying three different lens models, we present a practical approach for mathematical modelling and evaluation of these geometries. Contrary to typical lens measurement methods, non-contact measurements were performed on the Alcon SN6AD1, HumanOptics MS 612 DAY and the AMO ZMA00 lenses using a confocal microscope. Subsequent data processing includes centering, tilting correction, filtering and an algorithmic decomposition into a conic and polynomial part and the diffraction grating. Lastly, evaluation of fitting parameters and grating shape is done to allow for inferences about further optical properties. Results and analysis show the confocal microscope to be a suitable imaging method for lens measurements. The processing of this data enables the reconstruction of the annular diffraction grating over the complete lens diameter. Apodization, near addition and diffraction efficiency characteristics are found utilizing the grating shape. Additionally, near-optical axis curvature, asphericity and higher order polynomials are identified qualitatively from the reconstruction of the monofocal base form. Derived properties also include the lens optical base and addition power. By making use of the surface geometries, as well as the lens’ material and thickness, a full lens model can be created for further studies. In summary, our analytical approach enables the insight to various intraocular lens design decisions. Furthermore, this procedure is suitable for lens model creation for research and simulation.

Funder

Technische Hochschule Köln

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3