Optimizing the location of vaccination sites to stop a zoonotic epidemic

Author:

Castillo-Neyra Ricardo,Xie Sherrie,Bellotti Brinkley Raynor,Diaz Elvis W.,Saxena Aris,Toledo Amparo M.,Condori-Luna Gian Franco,Rieders Maria,Bhattacharya Bhaswar B.,Levy Michael Z.

Abstract

AbstractMass vaccinations are crucial public health interventions for curbing infectious diseases. Canine rabies control relies on mass dog vaccination campaigns (MDVCs) that are held annually across the globe. Dog owners must bring their pets to fixed vaccination sites, but sometimes target coverage is not achieved due to low participation. Travel distance to vaccination sites is an important barrier to participation. We aimed to increase MDVC participation in silico by optimally placing fixed-point vaccination locations. We quantified participation probability based on walking distance to the nearest vaccination site using regression models fit to participation data collected over 4 years. We used computational recursive interchange techniques to optimally place fixed-point vaccination sites and compared predicted participation with these optimally placed vaccination sites to actual locations used in previous campaigns. Algorithms that minimized average walking distance or maximized expected participation provided the best solutions. Optimal vaccination placement is expected to increase participation by 7% and improve spatial evenness of coverage, resulting in fewer under-vaccinated pockets. However, unevenness in workload across sites remained. Our data-driven algorithm optimally places limited resources to increase overall vaccination participation and equity. Field evaluations are essential to assess effectiveness and evaluate potentially longer waiting queues resulting from increased participation.

Funder

NIH-NIAID

Publisher

Springer Science and Business Media LLC

Reference75 articles.

1. Amitai, Z. et al. A large Q fever outbreak in an urban school in central Israel. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 50(11), 1433–1438 (2010).

2. Liu, Q., Cao, L. & Zhu, X. Q. Major emerging and re-emerging zoonoses in China: a matter of global health and socioeconomic development for 1.3 billion. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 25, 65–72 (2014).

3. Neiderud, C. J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 5(1), 27060 (2015).

4. Reyes, M. M. et al. Human and canine echinococcosis infection in informal, unlicensed abattoirs in Lima Peru. PLoS Negl. Trop. Dis. 6(4), e1462 (2012).

5. Singh, B. B., Sharma, R., Gill, J. P. S., Aulakh, R. S. & Banga, H. S. Climate change, zoonoses and India. Rev. Sci. Tech. Int. Off. Epizoot. 30(3), 779–788 (2011).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3