Exploration and machine learning model development for T2 NSCLC with bronchus infiltration and obstructive pneumonia/atelectasis

Author:

Jin Xuanhong,Pan Yang,Zhai Chongya,shen Hangchen,You Liangkun,Pan Hongming

Abstract

AbstractIn the 8th edition of the American Joint Committee on Cancer (AJCC) staging system for Non-Small Cell Lung Cancer (NSCLC), tumors exhibiting main bronchial infiltration (MBI) near the carina and those presenting with complete lung obstructive pneumonia/atelectasis (P/ATL) have been reclassified from T3 to T2. Our investigation into the Surveillance, Epidemiology, and End Results (SEER) database, spanning from 2007 to 2015 and adjusted via Propensity Score Matching (PSM) for additional variables, disclosed a notably inferior overall survival (OS) for patients afflicted with these conditions. Specifically, individuals with P/ATL experienced a median OS of 12 months compared to 15 months (p < 0.001). In contrast, MBI patients demonstrated a slightly worse prognosis with a median OS of 22 months versus 23 months (p = 0.037), with both conditions significantly correlated with lymph node metastasis (All p < 0.001). Upon evaluating different treatment approaches for these particular T2 NSCLC variants, while adjusting for other factors, surgery emerged as the optimal therapeutic strategy. We counted those who underwent surgery and found that compared to surgery alone, the MBI/(P/ATL) group experienced a much higher proportion of preoperative induction therapy or postoperative adjuvant therapy than the non-MBI/(P/ATL) group (41.3%/54.7% vs. 36.6%). However, for MBI patients, initial surgery followed by adjuvant treatment or induction therapy succeeded in significantly enhancing prognosis, a benefit that was not replicated for P/ATL patients. Leveraging the XGBoost model for a 5-year survival forecast and treatment determination for P/ATL and MBI patients yielded Area Under the Curve (AUC) scores of 0.853 for P/ATL and 0.814 for MBI, affirming the model's efficacy in prognostication and treatment allocation for these distinct T2 NSCLC categories.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3