Author:
Long Junbo,Deng Changshou,Wang Haibin
Funder
Science and Technology Project of Jiangxi Provincial Health Commission
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Shreyas, G. et al. Multi-fault diagnosis of industrial rotating machines using data-driven approach: A review of two decades of research. Eng. Appl. Artif. Intell. 123, 106139 (2023).
2. Benjemaa, R., Elhsoumi, A. & Abdelkrim, M. N. Fault diagnosis and fault-tolerant control design for neutral time delay system. Automatica 64(3), 422–430 (2023).
3. Liu, X. Y. & He, Y. G. A multi-stream multi-scale lightweight SwinMLP network with an adaptive channel-spatial soft threshold for online fault diagnosis of power transformers. Meas. Sci. Technol. 34(7), 075014 (2023).
4. Liu, W., Liu, Y., Li, S. & Zhai, Z. Demodulated synchrosqueezing S-transform and its application to machine-fault diagnosis. Meas. Sci. Technol. 34(6), 065004 (2023).
5. Luczak, D., Brock, S. & Siembab, K. Cloud based fault diagnosis by convolutional neural network as time-frequency RGB image recognition of industrial machine vibration with internet of things connectivity. Sensors 23(7), 3755 (2023).