Spring migration patterns of red knots in the Southeast United States disentangled using automated telemetry

Author:

Smith Adam D.,Sanders Felicia J.,Lefevre Kara L.,Thibault Janet M.,Kalasz Kevin S.,Handmaker Maina C.,Smith Fletcher M.,Keyes Tim S.

Abstract

AbstractRed Knots use the Southeast United States as a stopover during north and southbound migration and during the winter. We examined northbound red knot migration routes and timing using an automated telemetry network. Our primary goal was to evaluate the relative use of an Atlantic migratory route through Delaware Bay versus an inland route through the Great Lakes en route to Arctic breeding grounds and to identify areas of apparent stopovers. Secondarily, we explored the association of red knot routes and ground speeds with prevailing atmospheric conditions. Most Red Knots migrating north from the Southeast United States skipped or likely skipped Delaware Bay (73%) while 27% of the knots stopped in Delaware Bay for at least 1 day. A few knots used an Atlantic Coast strategy that did not include Delaware Bay, relying instead on the areas around Chesapeake Bay or New York Bay for stopovers. Nearly 80% of migratory trajectories were associated with tailwinds at departure. Most knots tracked in our study traveled north through the eastern Great Lake Basin, without stopping, thus making the Southeast United States the last terminal stopover for some knots before reaching boreal or Arctic stopover sites.

Funder

U.S. Fish and Wildlife Service, National Wildlife Refuge System, Southeast Inventory and Monitoring Branch

Section 6 grants

South Carolina Department of Natural Resources

Florida Gulf Coast University

National Fish and Wildlife Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3