A computational strategy for estimation of mean using optimal imputation in presence of missing observation

Author:

Yadav Subhash Kumar,Vishwakarma Gajendra K.,Sharma Dinesh K.

Abstract

AbstractIn this study, we suggest an optimal imputation strategy for the elevated estimation of the population mean of the primary variable utilizing the known auxiliary parameters for the missing observations. Under this strategy, we suggest a new modified Searls type estimator, and we study its sampling properties, mainly bias and mean squared error (MSE), for an approximation of order one. The introduced estimator is compared theoretically with the estimators of population mean in competition under the imputation method. The efficiency conditions for the introduced estimator to be more efficient than the estimators in the competition are derived. To be sure about the efficiencies, these efficiency conditions are verified through the three natural populations. We have also conducted a simulation study and generated an artificial population with the same parameters as a natural population. The estimator with minimum MSE and the highest Percentage Relative Efficiency (PRE) is recommended for practical use in different areas of applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3