Author:
Song Xiaoxia,Chen Zhi,Zhang Xue,Xiong Junfeng,Jiang Teng,Wang Zihan,Geng Xinran,Cheang U Kei
Abstract
AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Chen, W., Cheng, C. A. & Zink, J. Spatial, temporal, and dose control of drug delivery using non-invasive magnetic stimulation. ACS Nano 13, 1292–1308 (2019).
2. Yan, X. Z., Wang, F., Zheng, B. & Huang, F. H. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 41, 6042–6065 (2012).
3. Hu, S. H. et al. Photoresponsive protein-graphene-protein hybrid capsules with dual targeted heat-triggered drug delivery approach for enhanced tumor therapy. Adv. Funct. Mater. 24, 4144–4155 (2014).
4. Park, J., Kim, T., Choi, J. C. & Doh, J. In situ subcellular detachment of cells using a cell-friendly photoresist and spatially modulated light. Adv. Sci. 6, 1900566 (2019).
5. Zhang, L. et al. Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics 8, 1591–1606 (2018).
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献