A novel semi-flexible coaxial nozzle based on fluid dynamics effects and its self-centering performance study

Author:

Li Yu,Li Shilei,Du Xiaobo,Qu Haijun,Wang Jianping,Bian Pingyan,Zhang Haiguang,Chen Shuisheng

Abstract

AbstractCoaxial nozzles are widely used to produce fibers with core–shell structures. However, conventional coaxial nozzles cannot adjust the coaxiality of the inner and outer needles in real-time during the fiber production process, resulting in uneven fiber wall thickness and poor quality. Therefore, we proposed an innovative semi-flexible coaxial nozzle with a dynamic self-centering function. This new design addresses the challenge of ensuring the coaxiality of the inner and outer needles of the coaxial nozzle. First, based on the principles of fluid dynamics and fluid–structure interaction, a self-centering model for a coaxial nozzle is established. Second, the influence of external fluid velocity and inner needle elastic modulus on the centering time and coaxiality error is analyzed by finite element simulation. Finally, the self-centering performance of the coaxial nozzle is verified by observing the coaxial extrusion process online and measuring the wall thickness of the formed hollow fiber. The results showed that the coaxiality error increased with the increase of Young’s modulus E and decreased with the increase of flow velocity. The centering time required for the inner needle to achieve force balance decreases with the increase of Young's modulus ($$E$$ E ) and fluid velocity ($${v}_{f}$$ v f ). The nozzle exhibits significant self-centering performance, dynamically reducing the initial coaxiality error from 380 to 60 μm within 26 s. Additionally, it can mitigate the coaxiality error caused by manufacturing and assembly precision, effectively controlling them within 8 μm. Our research provides valuable references and solutions for addressing issues such as uneven fiber wall thickness caused by coaxiality errors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Fundamental Research Funds for the Universities of Henan Province

Doctoral Fund Project of Henan Polytechnic University

Young Teachers' Backbone Training Program of Henan Polytechnic University

Key Scientific Research Projects of Higher Education Institutions of Henan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3