Study of the strongest dust storm occurred in Uzbekistan in November 2021

Author:

Nishonov Bakhriddin E.,Kholmatjanov Bakhtiyar M.,Labzovskii Lev D.,Rakhmatova Natella,Shardakova Lyudmila,Abdulakhatov Erkin I.,Yarashev Darkhon U.,Toderich Kristina N.,Khujanazarov Temur,Belikov Dmitry A.

Abstract

AbstractWe studied and reconstructed a severe Central Asian dust storm of November 4, 2021, through high-resolution TROPOMI UVAI spaceborne observations, ground-based aerosol measurements, and Lagrangian particle modeling. The dust storm was caused by the front part of a cold polar anticyclone front from the Ural-Volga regions, which struck the central and eastern parts of Uzbekistan under favorable atmospheric conditions. Two plumes spread out, causing a thick haze to blanket the region. The most severe dust storm effects hit the capital of Uzbekistan (Tashkent) and the Fergana Valley, where the thick atmospheric dust layer dropped the visibility to 200 m. PM10 concentrations reached 18,000 µg/m3 (260-fold exceedance of the local long-term average). The PM2.5 concentrations remained above 300 µg/m3 for nearly ten days, indicating an extremely long-lasting event. The dust storm was caused by an extremely strong summer heatwave of 2021 in Kazakhstan with unprecedentedly high temperatures reaching 46.5 °C. The long-lasting drought dried up the soil down to 50 cm depth, triggering the soil cover denudation due to drying out vegetation and losing its moisture. This event was the worst since 1871 and considering the increasing aridity of Central Asia, the onset of potentially recurring severe dust storms is alarming.

Funder

Innovative Development Agency under Ministry of Higher Education, Science and Innovation of the Republic of Uzbekistan

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3