Unsupervised underwater shipwreck detection in side-scan sonar images based on domain-adaptive techniques

Author:

Wei Chengwei,Bai Yunfei,Liu Chang,Zhu Yuhe,Wang Caiju,Li Xiaomao

Abstract

AbstractUnderwater object detection based on side-scan sonar (SSS) suffers from a lack of finely annotated data. This study aims to avoid the laborious task of annotation by achieving unsupervised underwater object detection through domain-adaptive object detection (DAOD). In DAOD, there exists a conflict between feature transferability and discriminability, suppressing the detection performance. To address this challenge, a domain collaborative bridging detector (DCBD) including intra-domain consistency constraint (IDCC) and domain collaborative bridging (DCB), is proposed. On one hand, previous static domain labels in adversarial-based methods hinder the domain discriminator from discerning subtle intra-domain discrepancies, thus decreasing feature transferability. IDCC addresses this by introducing contrastive learning to refine intra-domain similarity. On the other hand, DAOD encourages the feature extractor to extract domain-invariant features, overlooking potential discriminative signals embedded within domain attributes. DCB addresses this by complementing domain-invariant features with domain-relevant information, thereby bolstering feature discriminability. The feasibility of DCBD is validated using unlabeled underwater shipwrecks as a case study. Experiments show that our method achieves accuracy comparable to fully supervised methods in unsupervised SSS detection (92.16% AP50 and 98.50% recall), and achieves 52.6% AP50 on the famous benchmark dataset Foggy Cityscapes, exceeding the original state-of-the-art by 4.5%.

Funder

The National Key Research and Development Program of China, Research and Development of Key Technologies for Underwater Archaeological Exploration

Publisher

Springer Science and Business Media LLC

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3