Application and limitation of a biological clock-based method for estimating time of death in forensic practices

Author:

Kimura Akihiko,Ishida Yuko,Nosaka Mizuho,Ishigami Akiko,Yamamoto Hiroki,Kuninaka Yumi,Hata Satoshi,Ozaki Mitsunori,Kondo Toshikazu

Abstract

AbstractEstimating time of death is one of the most important problems in forensics. Here, we evaluated the applicability, limitations and reliability of the developed biological clock-based method. We analyzed the expression of the clock genes, BMAL1 and NR1D1, in 318 dead hearts with defined time of death by real-time RT-PCR. For estimating the time of death, we chose two parameters, the NR1D1/BMAL1 ratio and BMAL1/NR1D1 ratio for morning and evening deaths, respectively. The NR1D1/BMAL1 ratio was significantly higher in morning deaths and the BMAL1/NR1D1 ratio was significantly higher in evening deaths. Sex, age, postmortem interval, and most causes of death had no significant effect on the two parameters, except for infants and the elderly, and severe brain injury. Although our method may not work in all cases, our method is useful for forensic practice in that it complements classical methods that are strongly influenced by the environment in which the corpse is placed. However, this method should be applied with caution in infants, the elderly, and patients with severe brain injury.

Funder

Grants-in-Aids for Scientific Research (A) to T. Kondo from the Ministry of Education, Culture, Science, and Technology of Japan.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3