1. Stevens, R. et al. Ai for science. Tech. Rep., Argonne National Lab.(ANL), Argonne, IL (United States) (2020).
2. Kitano, H. Artificial intelligence to win the nobel prize and beyond: Creating the engine for scientific discovery. AI Mag. 37, 39–49 (2016).
3. Lipton, Z. C. The mythos of model interpretability. arXiv preprint arXiv:1606.03490 (2016).
4. Arrieta, A. B. et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. arXiv preprint arXiv:1910.10045 (2019).
5. Dash, T., Srinivasan, A. & Vig, L. Incorporating symbolic domain knowledge into graph neural networks. Mach. Learn. 1–28 (2021).