A comprehensive psychological tendency prediction model for pregnant women based on questionnaires

Author:

Han Xiaosong,Cao Mengchen,He Junru,Xu Dong,Liang Yanchun,Lang Xiaoduo,Guan Renchu

Abstract

AbstractMore and more people are under high pressure in modern society, leading to growing mental disorders, such as antenatal depression for pregnant women. Antenatal depression can affect pregnant woman’s physical and psychological health and child outcomes, and cause postpartum depression. Therefore, it is essential to detect the antenatal depression of pregnant women early. This study aims to predict pregnant women’s antenatal depression and identify factors that may lead to antenatal depression. First, a questionnaire was designed, based on the daily life of pregnant women. The survey was conducted on pregnant women in a hospital, where 5666 pregnant women participated. As the collected data is unbalanced and has high dimensions, we developed a one-class classifier named Stacked Auto Encoder Support Vector Data Description (SAE-SVDD) to distinguish depressed pregnant women from normal ones. To validate the method, SAE-SVDD was firstly applied on three benchmark datasets. The results showed that SAE-SVDD was effective, with its F-scores better than other popular classifiers. For the antenatal depression problem, the F-score of SAE- SVDD was higher than 0.87, demonstrating that the questionnaire is informative and the classification method is successful. Then, by an improved Term Frequency-Inverse Document Frequency (TF-IDF) analysis, the critical factors of antenatal depression were identified as work stress, marital status, husband support, passive smoking, and alcohol consumption. With its generalizability, SAE-SVDD can be applied to analyze other questionnaires.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Jilin Province

Science and Technology Planning Project of Guangdong Province

Guangdong Universities’ Innovation Team Project

Guangdong Key Disciplines Project

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3