Author:
Li Qianyan,Deng Feifei,Pan Xiang,Bai Han,Bai Jie,Liu Xuhong,Chen Feihu,Ge Ren
Abstract
AbstractThis study aims to develop a trigger operator based on the Overlap Volume Histogram (OVH) and examined its effectiveness in enhancing plan quality to minimize radiation-induced lung injury in postoperative radiotherapy for breast cancer. This trigger operator was applied for plan re-optimization to the previous Volumetric Modulated Arc Therapy (VMAT) plans of 16 left breast conserving surgery cases. These cases were categorized into a Contiguous Group (CG) and a Separated Group (SG) based on the relative position between the target and the Left-Lung (L-Lung). We investigated the changes in Vx, mean dose, and Normal Tissue Complication Probability (NTCP) values of organs-at-risk (OARs) before and after using the trigger operator. The Pairwise Sample T test was employed to evaluate the differences in indices between the two groups before and after optimizations. The trigger operator effectively initiated plan re-optimization. The values of V5, V10, V20, V30, and V40 of the L-Lung, as well as the mean dose of the heart, all decreased after re-optimization. The Pairwise Sample T test results showed statistically significant differences in the V20, V30, and V40 of the L-Lung in the CG (P < 0.01), and in the V5, V10, V20, V30, and V40 of the L-Lung in the SG (P < 0.01). Our findings suggest that the proposed trigger operator can improve plan quality, thereby reducing radiation-induced lung injury in postoperative radiotherapy for breast cancer.
Funder
Kunming Xishan District Talent Work Innovation Project
Science, Technology Department of Yunnan Province
Yunnan University
Publisher
Springer Science and Business Media LLC