Multiple objective energy optimization of a trade center building based on genetic algorithm using ecological materials

Author:

Kabiri Elham,Maftouni Negin

Abstract

AbstractIt is crucial to optimize energy consumption in buildings while considering thermal comfort. The first step here involved an EnergyPlus simulation on a trade center building located in Tehran, Bandar Abbas, and Tabriz, Iran. A multi-objective optimization was then performed based on non-dominated sorting genetic algorithm II (NSGA-II) in jEPlus + EA to establish the building in the selected city where would benefit the most from implementing the radiant ceiling cooling system. Efforts were undertaken to choose environmentally-friendly materials. The final solution by Pareto charts resulted in a 52% reduction in energy consumption, a 37.3% decrease in cooling load, and a 17.4% improvement in comfort hours compared to the original design. Annual emission of greenhouse gas reduced as 167.67 tone of CO2 equivalent emission, 25.77 ton of CH4, and 0.2 ton of NO2. The mentioned algorithm was conducted for the first time on a trade center, including a DOAS system and radiant ceiling cooling system. Simultaneously, the environmental-friendly materials were dealt with. The procedure holds significant relevance for the design and optimization of buildings in Iran, especially wherever the climate is hot and humid. This approach offers advantages to the environment by reducing the impact on energy resources and utilizing environmentally-friendly materials.

Publisher

Springer Science and Business Media LLC

Reference72 articles.

1. O J. Global Energy Perspective 2022: Reference Case (Energy Insights, 2022).

2. B D. BP Energy Outlook 2019 Edition 2019, Vol. 732019.

3. Change IC. Mitigation of climate change. In Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Vol. 1454, 147 (2014).

4. (IIES) T.I.F.I.E.S. Statics, Figures and Analytical Reports Affiliated with the Oil Ministry of Islamic Republic of Iran (2017).

5. Rodrigues, E., Fereidani, N. A., Fernandes, M. S. & Gaspar, A. R. Climate change and ideal thermal transmittance of residential buildings in Iran. J. Build. Eng. 74, 106919 (2023).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3