Multi-wavelength interference phase imaging for automatic breast cancer detection and delineation using diffuse reflection imaging

Author:

Mahmoud AlaaeldinORCID,El-Sharkawy Yasser H.

Abstract

AbstractMillions of women globally are impacted by the major health problem of breast cancer (BC). Early detection of BC is critical for successful treatment and improved survival rates. In this study, we provide a progressive approach for BC detection using multi-wavelength interference (MWI) phase imaging based on diffuse reflection hyperspectral (HS) imaging. The proposed findings are based on the measurement of the interference pattern between the blue (446.6 nm) and red (632 nm) wavelengths. We consider implementing a comprehensive image processing and categorization method based on the use of Fast Fourier (FF) transform analysis pertaining to a change in the refractive index between tumor and normal tissue. We observed that cancer growth affects tissue organization dramatically, as seen by persistently increased refractive index variance in tumors compared normal areas. Both malignant and normal tissue had different depth data collected from it that was analyzed. To enhance the categorization of ex-vivo BC tissue, we developed and validated a training classifier algorithm specifically designed for categorizing HS cube data. Following the application of signal normalization with the FF transform algorithm, our methodology achieved a high level of performance with a specificity (Spec) of 94% and a sensitivity (Sen) of 90.9% for the 632 nm acquired image categorization, based on preliminary findings from breast specimens under investigation. Notably, we successfully leveraged unstained tissue samples to create 3D phase-resolved images that effectively highlight the distinctions in diffuse reflectance features between cancerous and healthy tissue. Preliminary data revealed that our imaging method might be able to assist specialists in safely excising malignant areas and assessing the tumor bed following resection automatically at different depths. This preliminary investigation might result in an effective "in-vivo" disease description utilizing optical technology using a typical RGB camera with wavelength-specific operation with our quantitative phase MWI imaging methodology.

Funder

Military Technical College

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3