Comparing three types of data-driven models for monthly evapotranspiration prediction under heterogeneous climatic conditions

Author:

Aghelpour PouyaORCID,Varshavian VahidORCID,Khodamorad Pour MehranehORCID,Hamedi ZahraORCID

Abstract

AbstractEvapotranspiration is one of the most important hydro-climatological components which directly affects agricultural productions. Therefore, its forecasting is critical for water managers and irrigation planners. In this study, adaptive neuro-fuzzy inference system (ANFIS) model has been hybridized by differential evolution (DE) optimization algorithm as a novel approach to forecast monthly reference evapotranspiration (ET0). Furthermore, this model has been compared with the classic stochastic time series model. For this, the ET0 rates were calculated on a monthly scale during 1995–2018, based on FAO-56 Penman–Monteith equation and meteorological data including minimum air temperature, maximum air temperature, mean air temperature, minimum relative humidity, maximum relative humidity & sunshine duration. The investigation was performed on 6 stations in different climates of Iran, including Bandar Anzali & Ramsar (per-humid), Gharakhil (sub-humid), Shiraz (semi-arid), Ahwaz (arid), and Yazd (extra-arid). The models’ performances were evaluated by the criteria percent bias (PB), root mean squared error (RMSE), normalized RMSE (NRMSE), and Nash-Sutcliff (NS) coefficient. Surveys confirm the high capability of the hybrid ANFIS-DE model in monthly ET0 forecasting; so that the DE algorithm was able to improve the accuracy of ANFIS, by 16% on average. Seasonal autoregressive integrated moving average (SARIMA) was the most suitable pattern among the time series stochastic models and superior to its competitors, ANFIS and ANFIS-DE. Consequently, the SARIMA was suggested more appropriate for monthly ET0 forecasting in all the climates, due to its simplicity and parsimony. Comparison between the different climates confirmed that the climate type significantly affects the forecasting accuracies: it’s revealed that all the models work better in extra-arid, arid and semi-arid climates, than the humid and per-humid areas.

Funder

Bu-Ali Sina University, Deputy of Research and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3