Author:
Singh Shweta,Adam Mohamed,Matkar Pratiek N.,Bugyei-Twum Antoinette,Desjardins Jean-Francois,Chen Hao H.,Nguyen Hien,Bazinet Hannah,Michels David,Liu Zongyi,Mebrahtu Elizabeth,Esene Lillian,Joseph Jameela,Ehsan Mehroz,Qadura Mohammad,Connelly Kim A.,Leong-Poi Howard,Singh Krishna K.
Abstract
AbstractIntraflagellar transport protein 88 (Ift88) is required for ciliogenesis and shear stress-induced dissolution of cilia in embryonic endothelial cells coincides with endothelial-to-mesenchymal transition (EndMT) in the developing heart. EndMT is also suggested to underlie heart and lung fibrosis, however, the mechanism linking endothelial Ift88, its effect on EndMT and organ fibrosis remains mainly unexplored. We silenced Ift88 in endothelial cells (ECs) in vitro and generated endothelial cell-specific Ift88-knockout mice (Ift88endo) in vivo to evaluate EndMT and its contribution towards organ fibrosis, respectively. Ift88-silencing in ECs led to mesenchymal cells-like changes in endothelial cells. The expression level of the endothelial markers (CD31, Tie-2 and VE-cadherin) were significantly reduced with a concomitant increase in the expression level of mesenchymal markers (αSMA, N-Cadherin and FSP-1) in Ift88-silenced ECs. Increased EndMT was associated with increased expression of profibrotic Collagen I expression and increased proliferation in Ift88-silenced ECs. Loss of Ift88 in ECs was further associated with increased expression of Sonic Hedgehog signaling effectors. In vivo, endothelial cells isolated from the heart and lung of Ift88endo mice demonstrated loss of Ift88 expression in the endothelium. The Ift88endo mice were born in expected Mendelian ratios without any adverse cardiac phenotypes at baseline. Cardiac and pulmonary endothelial cells isolated from the Ift88endo mice demonstrated signs of EndMT and bleomycin treatment exacerbated pulmonary fibrosis in Ift88endo mice. Pressure overload stress in the form of aortic banding did not reveal a significant difference in cardiac fibrosis between Ift88endo mice and control mice. Our findings demonstrate a novel association between endothelial cilia with EndMT and cell proliferation and also show that loss of endothelial cilia-associated increase in EndMT contributes specifically towards pulmonary fibrosis.
Funder
Heart and Stroke Foundation of Canada
Publisher
Springer Science and Business Media LLC
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献