High-resolution geoelectrical characterization and monitoring of natural fluids emission systems to understand possible gas leakages from geological carbon storage reservoirs

Author:

Salone Rosanna,De Paola Claudio,Carbonari Rolando,Rufino Francesco,Avino Rosario,Caliro Stefano,Cuoco Emilio,Santi Alessandro,Di Maio Rosa

Abstract

AbstractGas leakage from deep geologic storage formations to the Earth’s surface is one of the main hazards in geological carbon sequestration and storage. Permeable sediment covers together with natural pathways, such as faults and/or fracture systems, are the main factors controlling surface leakages. Therefore, the characterization of natural systems, where large amounts of natural gases are released, can be helpful for understanding the effects of potential gas leaks from carbon dioxide storage systems. In this framework, we propose a combined use of high-resolution geoelectrical investigations (i.e. resistivity tomography and self-potential surveys) for reconstructing shallow buried fracture networks in the caprock and detecting preferential gas migration pathways before it enters the atmosphere. Such methodologies appear to be among the most suitable for the research purposes because of the strong dependence of the electrical properties of water-bearing permeable rock, or unconsolidated materials, on many factors relevant to CO2storage (i.e. porosity, fracturing, water saturation, etc.). The effectiveness of the suggested geoelectrical approach is tested in an area of natural gas degassing (mainly CH4) located in the active fault zone of the Bolle della Malvizza (Southern Apennines,Italy), which could represent a natural analogue of gas storage sites due to the significant thicknesses (hundreds of meters) of impermeable rock (caprock) that is generally required to prevent carbon dioxide stored at depth from rising to the surface. The obtained 3D geophysical model, validated by the good correlation with geochemical data acquired in the study area and the available geological information, provided a structural and physical characterization of the investigated subsurface volume. Moreover, the time variations of the observed geophysical parameters allowed the identification of possible migration pathways of fluids to the surface.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3